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A linear analysis of rotating stratified quasi-geostrophic flow past a circular cylinder 
on a 8-plane is performed for moderate stratification, i.e. for US = O(a) ,  covering 
effectively the range I$ Q US Q 1, and for strong stratification such that US = O(1). 
E 4 1 is the Ekman number and US is the product of the Prandtl number and the 
inverse rotational Froude number. The parameter 8 measures the importance of the 
production of relative vorticity by meridional motion. The analysis pivots about a 
range of /3 which constrains the interior motion to follow geostrophic contours. For 
moderate stratification 8 = O(E?), covering effectively the range a Q 8 4 a, while 
for strong stratification E 4 8 4 1. The dominance of /? in the interior is responsible 
for creating a narrow intense boundary layer along the eastern sector of the cylinder 
and an extensive blocked flow region surrounded by intense free shear layers west 
of the cylinder. These narrow regions which channel horizontally O(1) maw flux 
communicate through corner-like regions centred about the extreme meridional 
locations of the cylinder. The effect of stratification is to shear the flow vertically and 
to induce counter-flows laterally. When the stratification is strong the z-dependence 
is parametric. Nonlinear effects can be ignored when the Rossby number, E ,  satisfies 
the constraints E 4 ,?% for moderate stratification and 8 Q @B for strong stratifi- 
cation. When expressed in terms of the Reynolds number, Re = e /E,  smallness 
of nonlinear effects can be assured also for high-Reynolds-number flows. 

1. Introduction 
The experimental work of Boyer (1970) of flow past a circular cylinder in a rotating 

system on anf-plane led the way to an intensive investigation of the general problem 
of flow separation in such systems. The experiments demonstrated that sufficiently 
small Roasby numbers could delay the onset of separation for Reynolds numbers well 
above the critical value obtained for non-rotating systems. Using the quasi-geostrophic 
approximation Walker & Stewartson (1972) derived a criterion for flow separation, 
which is expressed as a ratio of the Rossby number, e, to the square root of the Ekman 
number, E. Merkine & Solan (1979) used a different formulation to account for certain 
asymmetries observed in Boyer’s experiments but obtained the same criterion for 
separation as Walker & Stewartson. 

Additional and more refined experiments were conducted by Boyer & Davies 
(1982) who emphasized 8-plane effects measured by the parameter 8. The experiments 
which were conducted in the parameter regime I& = O ( E ) , ~  = O(s) showed that /? 
inhibits separation in prograde flows but enhances it in retrograde flows. (The exact 
definition of 6, E and 8 all of which are assumed small, is given in the next section.) 
The experiments confirmed the boundary-layer analysis of Merkine (1980) predicting 
that separation is inhibited by Bin prograde flows. Yet, the parameter regime of that 
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study did not quite apply to the experiments since spin-down of vorticity was 
neglected compared to diffusion of vorticity. In a recent study of flow separation in 
a two-layer rotating fluid, Merkine & Brevdo (1986) considered also the parameter 
regime of Boyer & Davies (1982). Using boundary-layer techniques they were able 
to obtain better agreement with the results of Boyer & Davies for both prograde and 
retrograde flows. The vertical boundary-layer structure was still that of Stewartson, 
namely the I& and I$ layers but the interior tangential velocity impressed on it was 
a function of a s ,  /3/s and the flow direction at  infinity. 

Figure 5 of Boyer & Davies (1982) shows that both prograde and retrograde flows 
exhibit divergence of streamlines west of the cylinder and convergence of streamlines 
east of it. (North is defined as the direction of increasing basic rotation.) These effects 
were accentuated in the nonlinear analytic study of Foster (1985) who considered, 
for prograde flows only, the parameter range I$ < p < a. In this range of /3 the 
western divergence becomes an extensive blocked region surrounded by ‘free shear 
layers and the eastern convergence evolves into a narrow layer with very high 
velocities adjacent to the eastern sector of the cylinder. This latter layer was referred 
to by Foster as the Rossby layer. (These features are discussed also in Merkine & 
Brevdo (1986) for /3 = O(I$) . )  Foster showed also that separation is delayed until the 
boundary layer attains a much higher level of nonlinearity. To be more specific, in 
the parameter regime of the experiments the a layer becomes nonlinear when 
s/B = O( 1) and the criterion for separation is given by €/Id = f(/3/s) where f(B/s) 
is of order unity and depends on the flow direction. In Foster’s study, however, the 
I& layer in the eastern sector becomes nonlinear when sp /E  = 0(1), that is at much 
lower values of s, but separation is delayed to Rossby numbers much larger than E/@.  
The nonlinear layer of Foster is still Stewartson-like but it is controlled by a thicker 
layer of thickness ,?$//3, the Rossby layer, which carries an O( 1) mass flux an& whose 
sructure is such as to delay the separation of the I& layer. We observe that the 
Reynolds number of the flow defined as Re = s/E can be large even if nonlinear effects 
are small such that sp/E 4 1. In this case the linear dynamics prevails everywhere 
but the Rossby layer still channels the O( 1) mass flux. 

When /3 = O ( a )  the Rossby layer merges with the I!$ layer which is no longer 
Stewartson-like. It is advantageous to analyse such a layer since for small values of 
the ratio /?/I$ we recover Foster’s regime while for large values of the ratio we gain 
insight into the dynamics that exists when a < p 4 a. (When /3 = O ( a )  the Rossby 
layer merges with the ,?i$ layer and its dynamics is no longer quasi-geostrophic.) Such 
an approach will be taken when stratified fluids are considered later in this work. 
Summarizing the role of p ,  we observe that as it increases from zero its effects 
penetrate from infinity. When p < I$ the entire flow field behaves essentially as if 
it  is on an f-plane. When /? = O(I$)  distinction appears between prograde and 
retrograde flows in the interior which for prograde flows contains damped Rossby 
waves. When /3 & ,?$ we enter Foster’s regime. The interior flow is constrained to 
follow geostrophic contours and /3 starts to participate directly in the boundary-layer 
dynamics. 

The above studies assumed homogeneous fluids but from the point of view of 
possible geophysical applications it is of considerable interest to learn how stratifi- 
cation affects separation. It turns out that the degree of complexity introduced by 
Stratification is considerable but it is worth pursuing since new dynamical features 
are discovered. A linear analysis of rotating continuously stratified flow past a right 
circular cylinder on an f-plane is given by Merkine (1985). In the present work we 
extend that study to the /3-plane where, as in Foster’s study, /3 is allowed to dominate 
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the dynamics. Because of the intricacy of the dynamics we find it instructive to 
recapitulate the major parameter regimes of the stratified f-plane. 

Barcilon & Pedlosky (1967a, b) carried out a most thorough investigation of the 
linear dynamics of contained rotating stratified fluids. Denoting by US the 
stratification parameter where u is the Prandtl number and S is the inverse of the 
rotational Froude number (the exact definition of u and S is given in the next section), 
Barcilon & Pedlosky concluded that when US 4 the fluid behaves as if it were 
essentially homogeneous while for US % Ei i t  is dominated everywhere by stratifi- 
cation. In  the intermediate region I& 4 US 4 I@ the dynamics was found to be of a 
hybrid nature, exhibiting features of both homogeneous and stratified fluids. As US 
increases from zero the effects of stratification are found to penetrate from the vertical 
wall into the interior. This direction of penetration is in opposite sense to that of 8 
and it follows from the fact that it  is the vertical velocity which attains its largest 
values next to the vertical wall and hence is affected first by the degree of 
stratification present. In  the intermediate region standard Ekman layers are present 
along the horizontal boundaries and the vertical boundary layer splits into three 
sublayers which are respectively, the innermost layer of thickness (as)%?$, the 
intermediate hydrostatic baroclinic layer of thickness (aS)i and the outer homoge- 
neous layer of thickness a. In  the strongly stratified limit Ekman layers no longer 
control the dynamics and, in fact, they are frequently absent. Along the vertical walls 
only the buoyancy layer, now of thickness B, remains. 

To capture effectively the effects of stratification when a vertically sheared external 
flow impinges on a vertical cylinder Merkine (1985) considered two parameter regimes 
US = O(Ef )  and uh' = O(1) which are referred to as the moderate and strong regimes 
of stratification, respectively. In  the first regime the intermediate baroclinic hydro- 
static layer merges with the external €d homogeneous layer yielding a baroclinic 
hydrostatic layer which is in geostrophic balance. The innermost buoyancy layer 
shrinks to O@).  By allowing the ratio uS/B to assume a continuous range of values 
from small to large it was possible, in the context of external flows, to exhibit in a 
single formulation how stratification affects the dynamics as it increases from small 
to moderately strong values. The case of strong stratification was then treated 
separately. The interior flow was controlled by viscous diffusive processes and for the 
particular problem considered it could satisfy to leading order all the necessary 
boundary conditions without necessitating the narrow E: vertical buoyancy layer. 

The major finding of the linear analysis of Merkine (1985) was that oncoming flows 
which are of one sign but possess vertical shear can induce flow reversal regions next 
to the eylinder. Depending on the degree of stratification these regions can occupy 
the inner part of the vertical boundary layer or can extend horizontally across 
distances comparable to the horizontal scale of the cylinder. Based on the nonlinear, 
two-layer, f-plane study of Brevdo & Merkine (1985), which demonstrates the 
existence of fully attached boundary layers with inner flow reversal regions, Merkine 
(1985) argued that nonlinearity should push the backflow region downstream of the 
forward stagnation point and should cause separation to occur at the rear stagnation 
point. When the stratification is moderate the linear analysis is valid as long as 
B = o(Ef) and when the stratification is strong it is valid as long as E = o(E). Thus, 
the former case can correspond to high-Reynolds-number flows since the requirement 
is that Re = o(Eb), but the latter case is certainly a slow flow problem since Re = o(1) 
and hence of no direct geophysical applicability. It can apply, however, to laboratory 
situations. We note that the interior slow flow should not be thought of as a creeping 
Stokes flow since it is still in geostrophic hydrostatic balance. 
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We can envision now the role of /I when incorporated into the linear analysis of 
Merkine ( 1985) and consider moderate stratification fist.f-plane dynamics essentially 
prevails uniformly when /I 4 Ek When /I = O(Ef ) ,  /I-effects become important in the 
interior but the boundary layers that exist next to the cylinder still have thef-plane 
structure. /I affects them only through the asymptotic matching condition on the 
tangential velocity and this situation still prevails when a 4 /I 4 a. Now, however, 
the interior flow is constrained to follow geostrophic contours and a linear Rossby 
layer develops next to the cylinder and on top of the a layer. When /I = O(Ef )  the 
Rossby layer merges with the hydrostatic baroclinic a layer which must now carry 
O(1) mass flux. Thus it seems interesting physically to consider the two parameter 
regimes /I = O(B) and /I = O ( a )  covering effectively the range 0 < /I 4 B. (The 
upper bound is determined by the buoyancy layer.) It turns out, as explained in the 
next section, that it is not possible to obtain analytical solutions for the interior flow 
when /I = O(B). However, Merkine 6 Brevdo (1986) considered this flow regime 
including nonlinear effects in the context of a two-layer model for a vertically sheared 
flow and much physical insight can be gained from that study. Analytical solutions 
are possible when /I = O ( a )  and they are discussed in $3. Thus the range of 
parameters covered in the case of moderate stratification is effectively given by 
Ef 4p 4 B a n d  lZf4 aS 4 1. 

The situation is different when stratification is strong. In the f-plane case the 
interior vertical velocity is suppressed to O(E) and it is at this order that the 
geostrophic degeneracy is removed. Thus when /I 4 E the dynamics is still f- 
plane-like. But when /I = O(E), /I-effects become as important as the viscous diffusive 
processes which control the leading-order interior flow. (Recall that this interior flow 
can satisfy to leading order all the necessary boundary conditions stated in Merkine 
1985.) It turns out again, as argued in the next section, that no analytical solutions 
of the linear problem are possible when /I = O(E) .  However, when E 4 /I + 1 the 
interior flow is constrained to follow geostrophic contours and a new boundary layer 
of thickness O((E//I) i )  develops next to the cylinder. (The dynamics of this boundary 
layer is always quasi-geostrophic by virtue of the smallness of /I which ensures that 
the layer is thicker than I&.) Linear analysis is possible in this range of p and 
US = O(1). It is given in $4. 

Foster has shown in his problem that nonlinear effects become important when 
@B/E = O(1). The linear analysis of the two stratification regimes discussed in the 
present work, when /I is large in the sense stated above, places different constraints 
on the Rossby number. Because of the considerable complexity of the problem we 
find it less confusing to assess nonlinear effects as we proceed with the analysis. Suffice 
it to state here that in the case of moderate stratification nonlinear effects can be 
ignored as long as E 4 and in terms of the Reynolds number the constraint is 
Re+ Xif. It follows that the Reynolds number can still be large. When the 
stratification is strong nonlinear effects can be ignored as long as E 3 and the 
corresponding constraint on the Reynolds number is Re 4 @/Ef which can also be 
large. This is a surprising result since in the correspondingf-plane case the Reynolds 
number is constrained to be small. In  spite of the considerable difference in the 
parameter regimes between the linear version of Foster’s problem and the present 
work we find the same basic structure which is, however, sheared vertically as a 
consequence of stratification. 
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2. Formulation 
We consider an incompressible, viscous, heat-conducting fluid confined between 

two horizontal planes at distance D apart. The system is on a 8-plane such that it 
rotates about the vertical z-axis with an angular velocity sh which varies linearly with 
y, 52 = 52, +P*Dy. The y-axis corresponds to the meridional direction of geophysical 
flows. A horizontally uniform vertically sheared flow with characteristic velocity V 
is forced in the z-direction past a vertical cylinder of radius r,D which extends 
throughout the depth of the system. Using V and D as reference scales we obtain 
for steady motions the following linearized non-dimensional equations 

(1 +By)R x q = -v, P + p v q ,  (2.1) 

O =  -P,+T+;EVaw, (2.2) 

V,*q + W ,  = 0,  (2.3) 

USW = +EV2T. (2-4) 

q is the horizontal velocity vector and w is the vertical component of velocity. 
Horizontal two-dimensional operators are denoted by the subscript H. The dynamic 
pressure and temperature are denoted by P and T ,  respectively. The ratio of the 
kinematic viscosity, v, to the heat conductivity, k, is defined by the Prandtl number 
U. E = v/Q,  DB is the Ekman number and S = aATg/4shX D is the rotational 
stratification parameter. g is the acceleration of free fall and a is the coefficient of 
thermal expansion. AT 2 0 is the bwic temperature difference of the equilibrium state 
and it is assumed that a AT Q 1. 8 = 8*D/sh, is the 8-parameter. 

Equations (2.1)-(2.4) are supplemented by the boundary conditions 

q = w = O ,  n.VT=O o n z = 0 , 1  a n d r = r O  (2.5) 

(2.6) 
and 

a and b are positive constants and (2.6) implies that at large distances from the 
cylinder the motion is in exact geostrophic balance and can be either prograde or 
retrograde provided that 2a-b > 0. The condition of no heat flux imposed on the 
dynamical part of the temperature field simplifies the analysis (Barcilon & Pedlosky 
19673) and allows direct comparison of the theory with laboratory experiments which 
utilize salinity rather than temperature as the agent of Stratification (Boyer et al. 
1987). 

Thef-plane dynamics discussed by Merkine (1985) is governed by (2.1)-(2.6) with 
= 0. Following that work our analysis pivots on the parameter constraint E < 1 

such that the system is moderately stratified when US = O(Ef)  or strongly stratified 
when US = O(1). It is assumed also that 8 Q 1 but it is the relative magnitude of j3 
and E which determines the importance of the 8-effect. When the latter operates on 
the dynamical level set by E and 8, such that 8 = O(B) when the system is 
moderately stratified and 8 = O ( E )  when it is strongly stratified, decaying Rossby 
waves fill the interior. The leading-order pressure field, PO, in each of these two cases 
is governed in the linear regime by the potential vorticity equation 
V a e Z  = (2cSp/E) PO, for moderate stratification and by 

P = T[a+b(z-f)] y as r-tm. 
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for strong stratification, subject to appropriate boundary conditions. The boundary- 
value problem thus obtained is intractable analytically. In the strong stratification 
case, for example, the coefficient of each vertical eigenfunction can be written as 

co 
X G,(r) sinno 

where r and 8 are the polar coordinates and G, are governed by an infinite system 
of fourth-order coupled ordinary differential equations with modified-Bessel- 
function-like properties. It turns out that an analytical approach is possible and 
significant physical understanding can be obtained when b is sufficiently strong such 
that the interior motion is constrained to follow geostrophic contours. Following the 
lengthy discussion of the previous section we require that /3 = O(B) when the 
stratification is moderate and that E 4 /? 4 1 when the stratification is strong. 
Nonlinear effects can be neglected if we assume that the Rossby number, defined as 
E = V/29, D, satisfies the constraints stated a t  the end of the previous section. 

n-1 

3. Strong p, moderate stratification, /? = O(B), US = O(B) 
It is shown in Barcilon & Pedlosky (1967a) that even for US as large as O(1) the 

dynamics of the Ekman layers are not affected by stratification. Consequently the 
standard Ekman suction condition w = &+BQ z = fT+ can be used where g is the 
leading-order vertical component of the relative vorticity . This O(Ef)  estimate of the 
vertical velocity is consistent with the estimate derived from the temperature 
equation (2.4) when the stratification is moderate. It follows that outside sharp 
gradient regions the following expansion of the field variables seems appropriate 

(3.1) I P = po+BP'+ ..., q = $+Efq'+ ...) 
T = !P+EfP+ ..., w = Bw0+ ... , 

Substitution of (3.1) into (2.1)-(2.4) yields the following geostrophic hydrostatic 
balance for the leading-order motion : 

I 4" = R X vpo, 

! P = q .  
Since B = O@), the O(Ef)  vorticity equation restricts the leading-order horizontal 
motion to following geostrophic contours and we obtain 

apo 
ax 

wo = - = 0 =- Po = po(y, z) ,  (3-3) 

where wo is the meridional velocity. 
It is obvious that the geometric constraint imposed by the cylinder requires lateral 

motion of at least that portion of the flow field that lies in the range -r0 < y < ro. 
The conflict between this requirement and (3.3) can be resolved in several ways. One 
possibility requires that the lateral deflection of fluid particles takes place over 
distances which are much larger than ro. This slow lateral deflection must be 
accompanied by a blocked region in the vicinity of the cylinder and in this region 
u, the x-component of velocity, must be small. The other possibility requires the 
existence of a vertical boundary layer next to the cylinder which is capable of 
deflecting around it an 0(1) mass flux. 

Foster (1985) showed that the two possibilities exist in different parts of the flow 
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domain when homogeneous flow is considered. A blocked region exists to the west 
of the cylinder while a narrow boundary-layer is adjacent to it in the east. The two 
regions exchange the O(1) mass flux through a singular rectangular corner region 
located on the cylinder at y = k r,,. The transition between the weak blocked flow west 
of the cylinder and the unblocked unidirectional flow that exists for IyI > ro occurs 
in a narrow free shear layer which commences a t  the corner region and spreads 
laterally away from it. Our study shows that this basic structure prevails also when 
the fluid is stratified. The details depend, of course, on the degree of stratification. 
In the rest of the flow field the pressure distribution (2.6) holds to leading order. 

P = P ,  

u, = c,, 

w = d, 

= C e / B ,  
1 (3.4) 

All the tilde variables are 0(1) as E+O. Substitution of (3.4) into (2.1)-(2.4) shows 
that the leading-order motion is in the geostrophic hydrostatic balance 

Eliminating the vertical velocity from the vertical component of the vorticity 
equation, using the temperature equation, leads to the following leading-order 
potential-vorticity equation 

where a = l$/a5S and /?, = 2/3/Ef are O(1). When p,+O (3.6) reduces, aside from 
a different notation, to the f-plane case, (equation (3.10), Merkine 1985). The 
appropriate boundary conditions for (3.4) are the Ekman compatibility conditions 

the no-slip conditions 
aP 
aP 

P = o ,  - = o  o n p = o ,  

3.1. The dejecting vertical layer 

The study of Merkine (1985), which is based on the earlier considerations of Barcilon 
& Pedlosky (1967b), shows that for moderate stratification and in the f-plane case 
the vertical boundary layer along the cylinder consists of two sublayers. The thicker 

layer is necessary for imposing the wall conditions on the leading-order horizontal 
motion and temperature field. The inner layer is required for applying the no-slip 
condition to the leading-order vertical velocity. The same boundary layer splitting 
exists here but now the layer must also deflect around the cylinder an O(1) mass 
flux. We denote by u, i nd  u, the radial and tangential velocity components and 
rescale the E f  layer variables as follows: 
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and the matching condition 

The thermal wind relation 
(3.10) 

which follows from (3.5)’ and (3.8) guarantee that to leading order the no-heat flux 
condition is automatically satisfied along the vertical wall. We note that (3.9) is not 
a regular Stewartson-matching condition since it is a mass flux condition and not a 
velocity-matching condition. (3.9) must be imposed if the Id layer is to accomplish 
its deflecting task. The strong jet-like tangential velocity which is O(l3-f) in the 
layer cannot be matched with the weaker 0(1)  interior velocity that exists outside 
this layer. It follows that this strong velocity must decay to zero as p -+ 00. Our 
analysis is limited to obtaining an asymptotically consistent solution for the 
dominating field variables and for the wall shear stress and not for higher-order fields. 
For the same reasons we shall not discuss the inner ,?d layer whose dynamics is not 
explicitly influenced by /3 and whose contribution to the wall shear stress is of a higher 
order. The buoyancy layer is discussed thoroughly by Barcilon & Pedlosky (1967b) 
(see also Merkine 1985). 

Equations (3.6)-(3.9) admit solutions of the form 

f = e-+ sin(yz+$), (3.11) 

provided 2aY t any  = - 
a2y2-1’ 

(3.12) 

and As - ayah + /3, cos 8 = 0. (3.13) 

It follows that the vertical structure of the eigenfunctions of the Id layer is not 
affected by /3. The effect of the stratification parameter on these eigenfunctions and 
on the corresponding eigenvalues y,, is thoroughly discussed in Merkine (1985). 
(Note, however, the different notation, (3.12) corresponds to (3.16) and (3.17) of that 
paper with l/a corresponding to /3 and y to x.) The existence of the deflecting ,7d layer 
depends now on whether the roots of the cubic (3.13) yield a sufficient number of 
decaying exponentials such that all the radial boundary conditions can be satisfied. 
It turns out, as in Foster (1985), that a deflecting boundary layer exists only for 
cos9 > 0, regardless of the flow direction at infinity. From (3.12) and (3.13) we find 
that 

I Yn N (n-1)n ,  

Ain N a b n )  
(3.14) 

as n + GO. A,, must be rejected and indeed for any n only two roots of the cubic are 
relevant. The roots of (3.13) are not always real. Two complex conjugate solutions 
exist for all 

(3.15) 
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and in that case the real-A root must be rejected. Complex roots indicate the existence 
of decaying Rossby waves within the & layer. From the definition of 8, and a it 
follows that they increase in number as 8 or CTS increase and disappear when 8+$. 
It is important to observe that when 8, cos8 4 1 the estimate for A, given in (3.14) 
holds for all n. This indicates that as 8, decreases the deflecting layer widens up 
appreciably. In fact, it splits into two sublayers. The interior sublayer resembles the 
f-plane & layer and the exterior sublayer becomes the stratified analogue of the 
Rossby layer of Foster. When 8 = in, one exponential is lost and the present analysis 
is no longer applicable. The neighbourhood of 8 = in is treated in $3.2. 

In  view of the above discussion it is not difficult to show that the boundary-value 
problem (3.6)-(3.9) admits the following solution for 181 < +n : 

N 

n-1 
P =  TT,, sinB[a+b(z-+)]+sin6 X an sin(y,z+$,) 

x [cos ( ~ ‘ , p )  + ( A ; / A ~ )  sin (A’, p)] e-AbP 

a, = 

where N is the number of complex roots and A: = Re [A,], A; = I,[A,]. The 
tangential velocity is given by 

N 

n-i 
2, = T sin 8 X a,, sin (7, z + 4,) IA,l* sin ( A i p )  e-”P/A’, 

m 

T sin 6 X a, sin (7, z+ 9,) A,, A2n(e-AinP-e- h*nP)/(As,--l,) (3.18) 
n-N+l 

and the wall shear stress by 

It should be emphasized that the 8 dependence enters not only through sin 8 but also 
through the dependence of An on 8. 

A prerequisite to the discussion of the corner region presented in 53.2 is the limiting 
form of the above solution for 8++n. Equations (3.14) and (3.15) indicate that in 
this limit and also when 8 9 in  but pm+O the roots are real and that A,, = o(Aln). 
It follows that the width of the ,?d layer increases by a factor proportional to 
(8, cos8)-l and that the 0(1) mass flux is channelled now through this enlarged 
region. To obtain the structure of the solution in this wide exterior portion of the 
deflecting layer we define the slow variable 

p = 8, cosep, (3.20) 

and substitute it into (3.16). The desired expression is obtained when we consider the 
limit /3, cosS+O with i5 = O(1). The result is 

m 
P = F r o  sinO[a+b(z-i)]+sin8 X a, sin(y,z+$,) e-pIuyX, (3.21) 

n-i 
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where 
(3.22) 

We note also that (3.21) corresponds to a balance between the last two terms of (3.6). 
Using the definition of a, it follows that 

lim F = 0, 
w 

(3.23) 

verifying indeed that the entire O( 1) mass flux flows in this enlarged portion of the 
vertical boundary layer. Thus, we have shown that F is the baroclinic analogue of 
the homogeneous Rossby layer of Foster (1985). The tangential velocity induced in 
the baroclinic Rossby layer does not satisfy the no-slip wall condition on r = ro. This 
is accomplished by the inner part of the deflecting layer, which for /Im cos t9 --f 0, is 
affected by,!? only through the matching condition for large p ; otherwise, its structure 
is identical to that discussed by Merkine (1985). The inner limit as p + O  of the 
tangential velocity in the Rossby layer is given by 

00 

uf;@ = 0) = Tsin8 X 
n-i 

Considering the limit of (3.18) as ,!?, cost9+0 at fixed p we obtain that 

(3.24) 

(3.25) 

which is the desired solution for this limiting form of the Id layer. (Note that 
iie = uf;,!?, cost9 and that (3.25) corresponds to a balance between the first two terms 
of (3.6). ) 

We can estimate now the importance of nonlinear effects. Here and in the 
subsequent sections we shall compare advection effects in the equations for vorticity 
and temperature with one of the dominating terms in each of these equations. The 
above solution indicates that diffusion of vorticity is O(1) while buoyancy is O(&). 
Advection of vorticity is O(s/@) and advection of temperature is O ( a / f l ) .  It follows 
that nonlinear effects can be ignored in the deflecting layer as long as E -4 @. 

3.2. The corner region 
The discussion of the previous subsection shows that a separate treatment is required 
for the neighbourhood of r = ro and t9 = in. The widening of the deflecting layer as 
@+in implies that the bulk of the corner region must be in geostrophic-hydrostatic 
balance. It can be shown that the equation for the leading-order pressure field, Pr, 
in the exterior part of the corner region responsible for channelling the O( 1) mass flux 
is 

subject to the Ekman compatibility conditions (3.7) with p,. replacing p. The solution 
of (3.26) must connect the solutions existing in the eastern and western sectors of 
the cylinder. Equation (3.26) is not easy to solve but it is possible to demonstrate 
that it admits solutions possessing the desired beha,viour as .+fa. Applying a 
technique similar to that employed by Foster we find that as x+ 00 

Pr = T r , [ a + b ( z - i ) ] f  X a, sin(y,z+$,) e-pmt/a7b+O(~-3) (7 =p,.x),  (3.27) 
00 

n-1 
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and hence matching with (3.21) is possible. For x < 0 and large the desired solution 
of (3.26) consistent with the dynamics of the blocked region discussed next and 
capable of absorbing the O(1) mass flux is 

The tangential velocity in the outer part of the corner region does not satisfy the 
no-slip wall condition on r = ro and an inner layer of width fi is required. This inner 
layer is controlled by the same balance that yielded (3.25) and there is no need to 
pursue it any further. 

Expression (3.28) implies that the tangentid velocity induced at the wall by PC' 
becomes exponentially small as x+- a. The consequence is that the fi layer which 
is necessary at the corner region for imposing the no-slip wall condition on the solution 
of (3.26) disappears to leading order as x+- 00. We note also that for fixed pLI and 
x+- co 6 = O(lxli) implying that the corner region widens up to O(B) as O+inlc-. 
These last observations are important for our discussion of the free shear layer 
presented next. 

In  the ,?d layer of the corner region, vortex stretching is O(Ef )  while buoyancy is 
O(,?$). Advection of vorticity is O(e/Eh)  and advection of temperature is O(s/l&). In  
the l8 layer of the corner region, diffusion of vorticity is O ( a )  and buoyancy is 
O(&). Advection of vorticity is O(s/H) and advection of temperature is O(s/@). 
It follows that nonlinear effects appear first in the temperature equation of the ,?& 
layer and that they can be ignored uniformly in the corner region when e 4 m. 

3.3. The shear layer 
Our previous discussion showed that the deflecting boundary layer can exist only for 
101 < in. This implies that the region r = O(1) bounded by 101 > in and -ro < y < ro 
must be blocked such that 141 = o(1). This necessitates the existence of two intense 
jet-like regions at y = f r o  which channel into or out of the corner region (depending 
on the flow direction at large distances from the cylinder) the O( 1) mass flux blocked 
by the cylinder. Otherwise, no reconciliation can exist with the imposed flow at 
-ro < y < ro and x+- 00. Following the observations made at the end of the 
previous subsection we assume that the leading-order dynamics in each of the two 
shear layers is in geostrophiehydrostatic balance and rescale the corresponding field 
variables as follows : 

(3.29) I Y = ( f y - r o ) / B ,  w = WS, 

P = P ,  w=EiUP, 

u = us/,?&, T = P, 

where the f correspond to the shear layers at y = fro ,  respectively. (An fi layer 
with a balance similar to the E! layer of the corner region is possible also but it is 
not necessary for our leading-order motion.) Substitution of (3.29) into (2.1)-(2.4) 
leads to the following potential vorticity equation for the leading-order pressure field 
in each of the shear layers 

Psyyzz-  ($m/4 p", = 0. (3.30) 
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The appropriate boundary conditions are the Ekman compatibility conditions 

Pyy = +uPyy, on z = +Ti, (3.31) 

and the mass flux constraints 

(3.32) 

In addition, the solution of (3.30) must match the corner-region solution at 8 = +r, 
namely (3.28). The solution for P is 

By expressing 7 in terms of the corner-region variables it can be shown that (3.33) 
matches exactly (3.28). 

The leading-order zonal velocity obtained from (3.33), namely 

is a consequence of the 0(1) mass flux channelled through the shear layer. It does 
not smooth, however, the higher-order discontinuity associated with the zonal 
velocities 

(3.35) 

existing outside the shear layer. To remove this discontinuity it is necessary to 
consider the O(B) correction to the pressure field which induces an O(1) zonal 
velocity. Denoting this velocity by uy we find that it is given by 

The shear layer spreads out as x+- 00, its width becoming comparable to r,, when 
-x = O(E-f) .  A t  this stage the jet'svelocity, uS/B,  weakens to O( 1) and the expansion 
procedure fails since uy = O(1) also. The leading-order problem for the far field of the 
shear layer was formulated with X = ,@x as the appropriate zonal lengthscale. On 
this scale the x extent of the cylinder shrinks to zero but in spite of this additional 
simplification no analytical solution could be obtained for the far-field region. It is 
comforting, however, that the flow behaviour in the far field of the shear layer has 
no consequence on the dynamically important intense flow that exists in the vicinity 
of the cylinder. 

In  the near field of the shear layer, vortex stretching is O(Ef ) ,  buoyancy is O ( B ) ,  
advection of vorticity is O(s /B)  and advection of temperature is O(E/B). In the far 
field, vortex stretching is O(Ef) ,  buoyancy is O ( E ) ,  advection of vorticity is O ( d )  
and advection of temperature is O(E,@). It follows that nonlinear effect are negligible 
in the free shear layer provided E < l6. 

3 A. Discussion 
A schematic representation of the vertical singular regions that arise from the 
presence of the cylinder is given in figure 1.  Summarizing the nonlinear estimates 
stated above we find that advection of temperature in the Rossby-layer part of the 
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FIGURE 1. Schematic of the deflecting layer, the corner region and the free shear layer for 
moderate stratification. 

corner region is the first nonlinearity to affect the dynamics as the Rossby number 
is progressively increased. It follows that nonlinear affects can be neglected every- 
where provided that €4 Ek (The Ekman and the I$ layers place less severe 
restrictions than those stated in the previous sections.) The Reynolds number can 
still be large as E+O but it seems that it is much restricted compared to thef-plane 
cam which requires that Re 4 E* (Merkine 1985) or to the homogeneous case which, 
for /3 = O(Ef) ,  requires that Re 4 E d ,  as can be inferred from Foster's parameter of 
nonlinearity. We note, however, that when 8 = O(H) the asymptotic solutions of the 
corner region must still be linear. Thus, unless we are interested in the details of the 
corner region we can relax the constraint on nonlinearity and replace it by the next 
in line which is imposed by the advection of temperature in the near field of the shear 
layer. The improvement is not significant, however, since it requires that 6 < E% We 
conclude that the deflecting layer becomes nonlinear at a much higher level of 
nonlinearity and long after other portions of the flow field have become nonlinear. 
In  Foster's study, the corner region, the Rossby layer and the Ef layer become 
nonlinear first and simultaneously. 

We proceed now to study the effect of the free parameters on the dynamical 
behaviour of the system. We shall consider prograde flows only. Results for retrograde 
flows are obtained by reversing the flow direction. This applies also to the case of 
strong stratification discusssed in the next section and i t  is a consequence of the 
neglect of the advection terms. 

The interpretation of the analytical results obtained above is simplified somewhat 
by considering first the shear layer. Figure 2 depicts the zonal velocity in the shear 
layer for a depth-independent flow at infinity which corresponds to a = 1 and b = 0 
in (2.6). The vertical structure of the jet which is symmetric about z = 0.5 is nearly 
depth-independent and this seems to follow from the weak stratification since 
a = B/u8 = 10. The striking feature of the figure is the effect of 8,. When it 
increases the shear layer narrows proportionally to &f (see (3.34)) and the jet's 
velocity increases proportionally to Prn as required by the O( 1) mass flux constraint. 

Results for much stronger stratification, a = 0.1, are shown in figure 3. The interior 
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FIQURE 2. The meridional structure, multiplied by (-2& of the leading-order zonal velocity in 
the shear layer obtained from (3.34). Positive values correspond to motion in the direction of the 
flow at  infinity. The figure is for height-independent zonal velocity at  i n h i t  (a = 1 and b = 0 in 
(2.6)) and the structure is symmetric about z = 0.5. The plots are for a = d/d' = 10. Full lines 
correspond to B, = 10. The dashed line is for B, = 0.1. The z-structure for B,,, = 0.1 cannot be 
resolved on the plotted scale. The numbers denote the z-level. 

171 

FIQURE 3. As in figure 2 but for a = 0.1. 

flow is barotropic but the jet is highly sheared in the vertical. The maximum velocity 
occurs at mid-height and it is accompanied by counter-flow regions existing along 
the jet's edges. These are new features not present in the homogeneous fluid of Foster 
(1985). They can be understood if we recognize that the vertical velocity induced by 
the Ekman layers is not a linear function of height and hence does not lead to a 
uniform vortex tube stretching in the vertical. The effect of the Ekman compatibility 
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FIGURE 4. As in figure 2 but the flow at infinity vanishes on z = 0 and possesses unit vertical shear 

(a = 4 and b = 1 in (2.6)). 
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FIGURE 5. As in figure 4 but for a = 0.1. 

conditions (3.31), when expressed in terms of the horizontal shear of the zonal 
velocity, is to accentuate inward from the horizontal boundaries the horizontal shear 
that develops on z = 0 , l  because of the mass flux constraint. In  the vicinity of 
z = 0 , l  the vertical increase in the horizontal shear and also in the central jet's 
velocity is proportional to l/a while (3.34) implies that the shear layer width is 
proportional to a+. (The eigenvalues yn are functions of a as well. Using their 
properties (Merkine 1985) it  can be shown that the shear layer width is proportional 
to a+ for small a and becomes independent of a for large a.) It follows that as 
stratification increases (a decreases) the mass flux constraint cannot be satisfied 
unless counter-flow regions accompany the high-velocity regions. 

We consider now a situation where the flow vanishes on z = 0 and possesses a unit 
vertical shear at infinity such that a = and b = 1 in (2.6). The zonal velocity of the 
shear layer is depicted in figures 4 and 5 for a = 10 and a = 0.1, respectively. When 
we contrast these figures with figures 1 and 2 we find two new features. First, the 
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FIGWE 0. The vertical structure of the leading-order jet velocity multiplied by (-2s)i a t  the centre 
of the shear layer as a function of z for /?,/a = 1. The two top lines correspond to /?, = 10 and 
a = 10 and the two bottom lines correspond to /?, = 0.1 and a = 0.1. The full lines are for a = 1 
and b = 0. The dashed lines are for a = 4 and b = 1. 

jet’s velocity does not vanish on z = 0 although the interior flow vanishes there. 
Secondly, figures 4 and 5 show that the jet’s velocity on z = 1 is considerably smaller 
than the corresponding velocity depicted in figures 2 and 3, although the interior 
velocity on z = 1 is equal to 1 in both cases. The linear increase of the interior velocity 
with height requires that the O( 1) mass flux in the shear layer increases also linearly 
with height. This basic tendency is accompanied, as implied by the thermal wind 
relation, Tsy = -uz, by a positive heat flux which attains its maximum a t  the jet’s 
centre, decays to zero laterally and is a weak function of height. Considering the shear 
layer in the neighbourhood of y = r,, we observe that the heat flux divergence is 
negative for y > r, and positive for y < ro. The Ekman compatibility conditions 
(3.31) can be written as u& = &a( - Ty)y where the upper/lower sign corresponds to 
the bottom/top level. It follows that the heat flux divergence generates on z = 0 
negative horizontal shear for y > r, and positive horizontal shear for y < ro. The 
consequence is a positive velocity in the vicinity of the jet’s centre. The counter-flow 
regions existing along the edges of the jet are a consequence of the O( 1) mass flux 
which vanishes on z = 0. The effect of the heat flux is opposite on z = 1 and this reduces 
the jet’s velocity when compared with the corresponding velocity depicted in figures 2 
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0 

FIQURE 7. The radial structure of the leading-order tangential velocity (3.18) in the deflecting layer 
for a = ,?$/a# = 10 and B = &t. Positive values correspond to motion in the direction of the flow 
at infinity. The full lines are for 8, = 10, a = t and b = 1. The numbers denote the z-level. Results 
for a = 1 and b = 0 are not plotted. They are slightly less than twice the values for the curve plotted 
for z = 0.5. The dashed lines are for 8, = 0.1. The z-structure for 8, = 0.1 cannot be resolved on 
the plotted scale. The lower dashed line corresponds to a = t and b = 1 and the upper dashed line 
corresponds to a = 1 and b = 0. 

and 3 for the depth-independent interior flow. When the stratification is weak, the 
vertical structure of the jet is dominated by the vertical structure of the interior flow 
and the jet’s velocity is a monotonic function of height, as observed in figure 4. When 
the stratification is strong, as in figure 5, the contribution of the barotropic part of 
the interior motion in conjunction with the Ekman compatibility conditions is to 
induce, similarly to the situation depicted in figure 3, a non-monotonic z-dependence 
of the jet’s velocity. The vertical structure of the jet’s velocity at the centre as a 
function of stratification for constant values of /?,/a is depicted in figure 6 for the 
two interior velocity profiles considered above. 

Equation (3.30) can be interpreted as a balance that exists in the shear layer 
between relative vorticity creation by lateral motion on the B-plane and the removal 
of relative vorticity through vertical diffusion. The deflecting layer governed by (3.6) 
is narrower and horizontal diffusion of vorticity is as important as the two 
mechanisms just mentioned. Nevertheless, the structure of the deflecting layer 
responds to variations in 8, and a very similarly to the shear layer’s response. The 
reason is the dynamical similarity that exists between the vertical wall and the 
blocked region in terms of how they affect the leading-order motion adjacent to them. 
Both act to reduce it, and the asociated heat flux, to zero. Figures 7 and 8 which 
depict at 8 = in the structure of the deflecting layer’s streamwise velocity exhibit 
all the features discussed earlier. The variation of the structure with 8 at fixed 8, 
can be interpreted by varying /Im at fixed 8 since the dependence on 0 is parametric 
and it is combined with /3, into the parameter bm cos8 that appears in (3.6). 
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FIGURE 8. The radial structure of the leading-order tangential velocity (3.18) in the deflecting layer 
at 0 = +t for a = @/US = 0.1 and Prn = 10. Positive values correspond to motion in the direction 
of the flow at infinity. Full lines correspond now to a = 1 and b = 0 (the structure is symmetric 
about z = 0.5) and dashed lines to a = 4 and b = 1. The numbers denote the z-level. Results for 
Brn = 0.1 are not plotted. They correspond to small-amplitude decaying long waves. 

4. Strong /3, strong stratification E 4,8 4 1, U S  = 0(1) 

quasi-geostrophic vorticity equation is 
When the flow is in geostrophic-hydrostatic balance to leading order (see (3.2)) the 

aw apo €qQ*VV&po---+/3-- = +EV2V&Po, 
a2 ax 

while the leading-order equation for the temperature field becomes 

u€qo've + u s w  = p w ~ .  
Note that when US = 0(1) and E 4 E, w = O ( E )  outside thin vertical layers. Elimin- 
ating w between the last two equations yields the following balance for the 
quasi-geostrophic potential vorticity 

Thus, it seems that advection is negligible compared to diffusion as long as E: 4 E 
or when the Reynolds number is small. This constraint remains in effect as long as 
/3 = O(E) .  The results of this section show that the balance 
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is valid for properly restricted large Reynolds numbers provided /3 is large compared 
to E. The reason is the consequent smallness of 

(4.1) is supplemented by the boundary conditions 

VhPO=O o n z = 0 , 1 ,  (4.2) 

ez = 0 on z = 0,1, (4.3) 

- 0  o n r = r o ,  
apo apo 
ar ae 
-- (4.4) 

PO =-U(z)y asr+co; U(z)  =+[a+b(z-+)] ,  (4.5) 

whose derivation follows from Barcilon & Pedlosky (1967 a) and is given in Merkine 
(1985). To summarize, the boundary-value problem given by (4.1)-(4.5) is appropriate 
for the range 0 < /3 4 1 however, when /3 = O(E)  it  is required that Re 4 1. This 
restriction on Re can be relaxed when /3 % E and the exact constraint on Re will be 
stated subsequently. The smallness of /3 is required for the validity of the /3-plane 
approximation. 

For the reasons outlined in $2 we limit our investigation to the strong$ case such 
that /3s B 1 and extend the analysis of Foster (1985) to  strongly stratified flows. Since 
the analysis presented in this section is similar to the analysis of the previous section 
it suffices to state the results. (Interested readers can obtain from the Editorial office 
more detailed derivation of the solutions stated below.) Thus away from singular 
surfaces the interior constraint (3.3) must be satisfied to leading order. Along the 
eastern sector of the cylinder a deflecting boundary layer of width (E//3)$ exists. It 

(4.6) 

is governed by the equation 

which is a balance between the creation of vorticity by the meridional motion on the 
/3-plane and its removal by horizontal diffusion. This is the balance that exists in 
Munk’s western boundary layer (Munk 1950). Here P is the leading-order pressure 
field and p = ( r -ro)  & is the boundary-layer coordinate. It follows that 

aP case- = 0, 
a4P 
3P4 aP 
-- 

The compatibility of (4.7) with the quasi-geostrophic dynamics requires that B& 4 1 
and this is assured since E 4 /3 4 1. The leading-order tangential velocity associated 
with this pressure field and hence with the boundary layer 0(1) mass flux is 

i& = -(2/3!) U(z ) r ,  sin8(cosB)t s in [~3~(cosB~p]  exp[-(cosB)~$]. (4.8) 

We observe that the z-dependence is parametric and it is impressed by the vertical 
structure at infinity. This highly two-dimensional structure prevails also in the corner 
region and in the shear-layer region. It can be shown that nonlinear effects can be 
ignored in the deflecting layer as long as 6 4 E$$. 

The leading-order pressure field, P, in the shear layer in the vicinity of the cylinder 
is governed by the equation 
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subject to the asymptotic mass flux constraints 

1 P = - U(z)r,, as Y + m ,  

P = O  as y+-co,  
and the initial condition 

(4.10) 

P = - U ( z )  ro H(  Y ) ,  (4.11) 

where H( Y )  is Heaviside's step function. The solution for P is 

P = -!jU(z)ro[:Jom dLL-'sin(L~) exp(-L4)+1] (T = Y / ( - z ) f ) ,  (4.12) 

while the leading-order streamwise velocity is given by 

u 8 = q q i J o  ro '(') dL cos (L7) exp ( - L4). (4.13) 

The leading-order zonal velocity us. is a consequence of the 0(1) mass flux 
channelled through the shear layer and as such it cannot smooth out the higher-order 
discontinuity associated with the 0(1) velocity jump across the shear layer. This 
weaker discontinuity is removed by the O ( p )  contribution to the pressure field. 
Denoting the corresponding O( 1) zonal velocity by u: it can be shown that 

The deflecting layer and the shear layer exchange the 0(1) mass flux through a 
corner region whose limit equation for the leading-order pressure field P is 

P satisfying the appropriate boundary conditions has the following asymptotic 
solutions : 

and hence it merges smoothly with the deflecting layer and with the shear layer. 
(Note that the equation for P expressed in terms of the similarity variable 7 is 
P&-+e = 0.) Nonlinear effects can be ignored in the corner region when e + Efp163. 

When -z = O(&) us and u: become comparable and the asymptotic expansion is 
no longer valid. When this happens lateral diffusion of vorticity has weakened to the 
level where vorticity generation by the now O(E)  vertical velocity can no longer be 
neglected and the z-dependence of the solution is no longer parametric. The structure 
of the flow in the far field of the shear layer is highly complicated but as it is not 
important dynamically it will not be presented here. Estimation of nonlinear effects 
in the shear layer leads to the conclusion that they can be safely ignored in the near 
field when e 4 BfE) and in the far field when e + 8. It follows that the shear layer 
becomes nonlinear first in the near field. 

A schematic representation of the vertical singular regions that arise for the range 
of parameters considered in this section is shown in figure9. Summarizing the 
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FIQURE 9. Schematic of the deflecting layer, the corner region and the free shear layer for 
strong stratification. 

I 

FIQURE 10. The integral in (4.13) aa a function of the similarity variable 7 defined in (4.12). It 
determines the meridional structure of the leading-order zonal velocity in the free shear layer for 
strong stratification. Positive values correspond to motion in the direction of the flow at infinity. 

nonlinear estimates stated above we find that nonlinearity appears first in the corner 
region. The free shear layer is affected next and only then the deflecting layer. (The 
Ekman layer places less severe restrictions on nonlinearity.) It follows that nonlinear 
effects can be neglected everywhere when E 4 Bffl or Re 4 fill$. In  the correspon- 
ding f-plane case and also when /3* = O(1) nonlinear effects can be neglected when 
E 4 E or Re 6 1 and these restrictions stem from the nonlinear advection of 
temperature. The dramatic increase in the allowable Reynolds number for the linear 
analysis to remain valid follows from the strong$ strong-stratification combination. 
In  this parameter regime the vorticity induced in the vertical singular surfaces by 
rising isopycnal surfaces is insignificant compared to the production of vorticity by 
the meridional motion while production is balanced by horizontal diffusion. The 
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consequence is the parametric z-dependence of the leading-order motion whose 
vertical structure is that of the flow at infinity. This parametric dependence is 
sufficient to nullify the nonlinear advection of the temperature and to raise the upper 
bound imposed on the Reynolds number. 

The leading-order vorticity balance in the singular regions forces short decaying 
Rossby waves which manifest themselves as counter-flows in the deflecting layer (see 
(4.6)) and in the free shear layer (see figure 10). In Foster’s shear layer where the 
balance is as in the western boundary layer of Stommel (1948), i.e. between the 
production of vorticity by the meridional motion and its dissipation by Ekman 
suction, no counter-currents exist. 

5. Conclusion 
We have made a linear analysis of stratified rotating flow past a circular cylinder 

on a 8-plane thus supplementing the analogue f-plane study of Merkine (1985). The 
mathematical complications introduced by the variability of the Coriolis parameter 
could be tackled analytically only when the production of relative vorticity by the 
meridional motion was allowed to dominate the dynamics. In  that case the bulk of 
the flow field was constrained to follow geostrophic contours, i.e constant y-lines in 
our case. This is enough to alter the dynamics significantly compared to the f-plane 
configuration since the geometric constraint imposed by the cylinder is felt at large 
distances to the west of the cylinder while the opposite occurs in the east. We have 
purposely refrained from using the terminology ‘ upstream ’ and ‘ downstream ’ since 
the eashwest asymmetry imposed by the 8-effect in the linear regime is invariant 
to the flow direction at infinity. Retrograde flow solutions can be obtained from 
prograde flow solutions by merely reversing the flow direction. This conclusion will 
not remain uniformly valid when advection terms are allowed to become important 
somewhere in the flow field. Although stratification could not modify drastically the 
basic features obtained by Foster (1985) in his consideration of homogeneous fluid, 
new dynamical features were discovered. The most striking one is the appearance of 
counter-flows. In  that sense the subtle consequences of stratification described in 
Merkine (1985) reappear here. 

The experiments of Boyer (1970) and Boyer & Davies (1982) as well as the more 
recent ones by Boyer & Kmetz (1983) and Boyer et al. (1984) concentrated on the 
dynamical aspects of the shed vortices. This is partly because of the possible 
importance of such vortices in geophysical applications and partly because of the 
technical difficulties involved in boundary-layer measurements, in particular in 
rotating systems. Vortex formation is related to the dynamics of the vertical 
boundary layer through the phenomenon of separation, and the nonlinear studies of 
Walker & Stewartson (1972), Merkine & Solan (1979), Merkine (1980), Foster (1985), 
Brevdo & Merkine (1985), and Merkine & Brevdo (1986) were able to explain certain 
features related to the appearance of vortices in rotating homogeneous fluids. No such 
studies are available for continuously stratified systems. However, since much insight 
into the stratified flow response has been gained by the linear analysis of thef-plane 
and 8-plane dynamics we feel that nonlinear effects should be pursued next. It is 
straightforward to formulate the nonlinear dynamics of the vertical singular regions 
but the solution of the problem is a formidable task not only in the strong 8-limit 
where the corner region becomes nonlinear first but also in thef-plane case as can 
be seen from the nonlinear problem for moderate Stratification stated by Merkine 
(1985). It is our intention to consider such problems in the future. 
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Finally it should be pointed out that the effect of p is simulated in the laboratory 
through the tilt of a horizontal bounding surface by a small angle p. In  stratified fluids 
the Taylor-Proudman theorem does not hold and the effect of the tilt cannot appear 
explicitly in the potential vorticity equation as it does for a homogeneous fluid or 
when the motion is on a sphere. However, when the tilt is sufficiently strong compared 
to I&, strong jets and blocking should develop at least next to the tilted plane, as 
can be inferred from an estimate of the vertical velocity induced by the tilt and the 
constraints imposed on it by the Ekman suction and buoyancy. It seems desirable 
that such experiments be carried out. 

A suitable set-up is the 2.4 m long tow tank used in the recent rotating stratified 
experiments of Boyer et al. (1987) who investigated the flow past three-dimensional 
tall obstacles. f-plane geometry was considered but /?-plane effects can presumably 
be introduced by tilting the top and bottom bounding surfaces as done in the 
experiments of Boyer & Davies (1982). In the rotating stratified experiments the tow 
tank was filled with linearly stratified salt-water fluid. Because of the large ratio of 
kinematic viscosity to salt diffusivity the equivalent of US assumed values of a few 
thousand and this places the experiments in the strong stratification category. The 
range of E was about lo-* and the smallest Rossby number was about 0.05. In  terms 
of the present analysis and that of Merkine (1985) the flow response was strongly 
nonlinear. (The Reynolds numbers was in the hundreds.) It follows that in order to 
be able to compare the linear analysis with the experiments using the above fluid the 
towing velocity must be greatly reduced from its typical value of 1 cm/s if the 
rotation rate is kept at its present range of 0.25-0.50 s-l. 

This research has been sponsored in part by the Air Force Office of Scientific 
Research, under Grant AFOSR-83-0069. 
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